\subnoto.

White Paper

eeeeeeeeeeeee

General architeCture...........oo i 3
] o] o] L= 3 3
SIGNAtUre’s PIatfOrM......coiiie e 3
Hardware security for isolation and in use memory encryption...........ccccccoevviiiiieeene s 4
Attestations and binaries reproduCibility................ooeiiiiiiiiiii e 6
ApPPliICatioN’s SESSION SECUIMLY......uuuiiiiiiiieiiieieieeeeee e e e e e e e e e e e e e e e aaaaaaaaaaaaeas 7
Encryption keys management..o e e 7

Authentification et Intégrité — HTTP Signature RFC 9421..........cccoiiiiiniinninceee e 9
L= 1= = | 9
T[T L ([= o {0 ToT= = 9
Mandatory signed elements.............coooi i 10
Implementation of the VErification............cccccciiiiiiiiiiiiieeee e 10
TIMING @ttACKS SECUILY ...t e e 10

Passwordless authentication...............oooeeeeeei i 1"
Supported MEthOAS.........ccoo 11
Email AUthentiCation......... ..o 11

Workflow of email authentication.............ccccoooiiiiiie e 11
Generation and storage of OTP.......cuuiiiiiiii e 12
LO B I Y 7= 1o F= 111 o T PP 12
Passkey authentication (WebAuthn)............ceom e 13
IMPIEMENTAtiON. ... ———— 13
Workflow of passkey registration.............ccccoiiiiiiii 13
Workflow of passkey authentication...............ccoeiiiiii e 14

Management of email tOKeNS.........cccceeiiiiiiciir e ————— 15
L1 1S Vo - PP PPPPPPPPPP 15
SeCUre liNKS GENEIALION..........uuiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaeaeens 15
Tokens liNk validation...........oooo e 15

SESSIONS SECUNILY.....ceiiiiiiiiiier e an e s e mn e e nn e e 17
N e a1 = o3 (1 = 17
SESSIONS MANAGEMENL......uuiiiiiiiiiiiiiiiii ittt e e e e e e e e et e e et e et eeaaaaaaaaaaaaaaaaaaaaaaaaaaaes 17

Encryption and protection of data...........cccceeeeeeeeieie e ————— 18
AES-GCM encryption With CONTEXL..........ooiiiiiiiiiiii e 18

Contextual encryption: details. ..o 18
Architecture of @NCrYPLON.........eei e 18

Compliance and standards............cccccciciiiriisssssssnsnennnnnnnnnnnen e r e e e e nnenees 19
= T F= T o KU Y=o PR 19
SeCUrity JOOA PraCliCES.coiuiiiiiiiiiii et 19

\subnoto 2

General architecture

Principles
Subnoto’s platform is built around the following key assumptions:

e Security must be transparent and provable—pinky promises and security
through obscurity aren't enough. That's why we use remotely attestable
components.

e Encryption at rest and in transit—the current industry standards—aren't
sufficient for today’s modern threats. All sensitive data is encrypted at rest, in
transit, and even while in use.

e Customers own their data (meaning only they can decide who can access it),
and we design everything to ensure nobody—not even Subnoto administrators
or cloud providers—can access it.

e C(lassic passwords or any stealable tokens (like cookies or standard API keys) are
unreliable and should be avoided. Instead, we use Passkeys, signed API
requests, and NOISE tunneling over HTTPS.

Signature’s platform

The signature’s platform consists of four main components:

1. Web Application:
o Asingle-page application (SPA) served from a trusted, signed container.
o Integrity is verifiable by rebuilding from public source code.
2. Main Enclave:
o Runs in isolation with memory encryption.
o Handles critical operations like encryption/decryption, session
management, and signatures.
3. Key Provisioners:
o Generate and protect encryption keys, ensuring only authorized enclaves
can access them.
4. Utility Main API:
o Manages non-critical operations such as external payments and invoicing.

\subnoto 3

Hardware security for isolation and in use memory

encryption

Subnoto leverages state-of-the-art hardware isolation and memory encryption using
AMD SEV/SNP, the Linux Kernel, QEMU, and Google's open-source Oak middleware'.
Our enclaves are “Confidential VMs” (CVMs) built on these key technologies.

The AMD SEV/SNP? secure microcontroller is responsible for:

e Memory encryption: This is hardware-based, and no software can access the
encryption keys. The keys are managed entirely by the Secure Processor, a 32-bit
microcontroller (ARM) that functions as a dedicated security subsystem
integrated within the SoC (system on chip). Each key is generated using the
onboard NIST SP 800-90-compliant hardware random number generator and
stored in dedicated hardware registers, where it is never exposed outside the
SoC in clear text.

o Memory Read

PTE C-bit

o Memory Write

Data
< CPU
e
PTE C-bit
' Project oak: https://github.com/project-oak/oak
> AMD SEV/SNP
https://www.am m/content/dam/amd/en/ ments/ -business- /white- rs/SEV-

SNP-strengthening-vme-isolation-with-integrity-protection-and-more.pdf

\subnoto 4

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://github.com/project-oak/oak

e and Software isolation: Unlike the traditional model where the hypervisor must
be trusted, CVMs eliminate this requirement.

Traditional Model AMD SEV Model

Hypervisor

Hypervisor

The Linux Kernel and QEMU are untrusted components that call various CPU
APIs to:

e Launch and trigger the hardware encryption to encrypt the Confidential
VM.

e Trigger the signed measurement of the initial state from the CPU

e Allow selected data to flow between the insecure environment and the
secure one. Most communication occurs through a memory space
allocated and shared between the Guest and the Hypervisor.

Hypervisor Guest

\subnoto. 5

Memory Data
(shared) Memory

(shared)

Attestations and binaries reproducibility

To maximize the benefits of this architecture, we need trusted and verifiable code
running inside the enclave. We draw heavy inspiration from the Oak project and use
hermetic Bazel build® to achieve reproducibility.

e The supply chain is minimized to the essentials and pinned to specific versions.

e Akey property of Bazel builds is determinism: each set of rules ensures the same
output every time the build runs. That's what allows the customers or a third
party to verify that the published code is indeed generating the attested
components used in production.

This process produces a set of components (from the VM firmware and BIOS to the
container running the application code, as well as the system image and kernel) that are
hashed and signed independently using both a private key and the Cosign keyless
system.

These steps generate a set of attestations that are presented to our client apps, which
can then decide whether to trust them.

Host machine

")

Untrusted Launcher

Oak Runtime

Enclave Application

(€ E2E Encrypted Tunnel »)

- ~ l

The Cosign keyless system allows us to link each attestation to a commit of our git
repository, it also prevents the usage of a long lived signature key (that could stolen or
misused) by leveraging the Sigstore's Certificate Authority and an OIDC authentication
from the Cl job itself.*

* Bazel hermetic builds: https://bazel.build/basics/hermeticity
* Sigstore’s Certificate Authority:

https://docs.sigstore.dev/certificate authority/certificate-issuing-overview/

\subnoto 6

https://docs.sigstore.dev/certificate_authority/certificate-issuing-overview/
https://bazel.build/basics/hermeticity

Application’s session security

When a client application connects to an Enclave Application, it first requests the
attestation evidence and associated endorsements. The endorsements include a
certificate chain from AMD to prove that the attestation report was signed by a
legitimate AMD CPU, as well as signed statements from the developers of the various
components running inside the enclave.

It then verifies the evidence using these endorsements and the expected reference to
ensure it matches expectations. The client application should also confirm that the
enclave application is running in an up-to-date and correctly configured Trusted
Execution Environment (TEE)—for example, that the CPU is using the latest versions of
microcode and SNP firmware, and that debugging is disabled—and that the identities of
the various components inside the enclave match expectations.

Once the client app is satisfied that the enclave application meets all its requirements, it
uses a public key bound to the evidence to establish an encrypted channel with the
enclave application.

This session occurs on top of the standard HTTPS session and is based on the NOISE®
protocol.

All the sensitive APl methods of our signature app are using this type of session.

Encryption keys management

A challenging aspect of the architecture is providing persistent encryption keys for
persistent data that we are unable to access. AMD SEV/SNP can generate such keys for
each hardware device, but the usable key is derived from the initial measurement of the
enclave extracting it. This means the keys differ for each different CPU and when the
initial measurement changes (e.g., during code updates).

To address this, we've built a dedicated service that encrypts a persistent key to external
storage using the AMD SEV-derived key. Enclave apps can query this key provider, which
verifies their attestations through a bidirectional Oak session® to confirm authorization.
New versions of the key provider can use the same mechanism to retrieve the
encryption key and persist it using their own TEE-derived key.

> The Noise protocol framework : https://noiseprotocol.org/
5 Dak Session : https://github.com/project-oak/oak/tree/main/oak session

\subnoto 7

https://github.com/project-oak/oak/tree/main/oak_session
https://noiseprotocol.org/

This key provider is using only two small components from Oak on top of the
application itself (no system, no linux kernel or anything else) :
e stage0’, that is the firmware used to boot the CVM, attest the other components
and launch the kernel.
e the oak_restricted_kernel® (60k lines of rust) that is doing the minimum
required to launch our application.
e The application itself (a few lines of rust).

It allows us to have a very small trusted computing base for this critical component and
to be very simple to audit and verify that no one can access the encryption keys.

7 Oak stage0 : https://github.com/project-oak/oak/tree/main/stage0

8 Dak restricted kernel : https://github.com/project-oak/oak/tree/main/oak restricted kernel

\subnoto 8

https://github.com/project-oak/oak/tree/main/oak_restricted_kernel
https://github.com/project-oak/oak/tree/main/stage0

Integrity and authentication

General

All requests to the enclaves are encapsulated within a NOISE tunnel (ensuring integrity

and confidentiality).

Furthermore, each API request uses the REC 9421 standard to guarantee authenticity
and integrity.

The HTTP signature protects both critical headers and the request body against any
alteration or interception.

Signature process

Client API Database

Generates HMAC-SHA256 signature

I,

Sends request with signature headers

»
>

Computes the hash of the request

«—

Validates signature format

Retrieves secret key (APl key)

v

Verifies signature
Checks timing (clock skew)

0

Authorizes or rejects

A

Client API Database

\subnoto 9

https://www.rfc-editor.org/rfc/rfc9421.pdf

Mandatory signed elements

Each request must sign four critical components to ensure the complete integrity of the
communication. The system is required to verify the request's timestamp to prevent
replay attacks, the HTTP authority to ensure the request is intended for the correct
server, the content type to validate the format of the data being sent, and finally the
hash of the request body to guarantee that the content has not been tampered with
during transit.

Implementation of the verification

The HTTP signature verification process follows a rigorous sequence of five main steps.
First, the system extracts and validates all the required signature headers from the
incoming request. Next, it parses the signature according to the strict specifications of
RFC 9421, breaking down the structural elements of the signature. The third step
consists of identifying the type of authentication used, whether it is an application key
or a session key. The system then retrieves the corresponding secret key from the
database. Finally, it performs the actual cryptographic verification using the
HMAC-SHA256 algorithm, comparing the provided signature with the one calculated
locally. If this verification fails, an authentication error is immediately raised to reject the
request.

Timing attacks security

The APl implements a sophisticated protection against replay attacks by rigorously
validating the time offset of requests. The system checks that the signature creation
timestamp falls within an acceptable time window. This approach protects against
attempts to maliciously reuse previously captured signatures, while taking into account
normal clock variations between different systems.

\subnoto 10

Passwordless authentication

The Subnoto system completely eliminates the use of traditional passwords, opting for

more secure authentication methods.

Supported methods

- OTP by email : one time code, secure transaction

- WebAuthn/Passkeys : biometric authentication or security hardware key

- SSO/0IDC : delegate to third party authentication service

Email Authentication

Workflow of email authentication

User Client API Email

Enters email

POST /request-login {email}

»

Generates OTP (3 random bytes)

Encrypts OTP with context

Temporarily stores encrypted OTP

Database

Sends OTP to user

v

Returns session token

Enters received OTP

v

POST /confirm-login {token, otp}

»

Retrieves encrypted OTP

v

Decrypts and compares OTP

Generates session keys

U

Encrypts secretKey with context

-

Stores accessKey + encrypted secretKey

v

Returns accessKey + secretKey

<
<

User Client API Email

\subnoto

Database

11

Generation and storage of OTP

The OTP (One-Time Password) generation process follows strict cryptographic standards
to ensure their unpredictability. The system first generates a random three-byte code
using the system’s secure cryptographic generator, thus producing a six-character
hexadecimal code. Simultaneously, a unique UUID token is created to identify the login
session.

The OTP is then encrypted using the AES-GCM algorithm with a specific context that
includes the token and the user's email address. This contextual encryption approach
prevents malicious alterations and exchanges in the database. Therefore, if during
decryption the context is not exactly the same, the decrypted value is never obtained
and the authentication process fails.

The encrypted code is temporarily stored in memory with a lifetime limited to five
minutes, along with the encryption key version and the expiration date. The OTP is sent
via the Brevo service (a French transactional email provider), where the code is
displayed in uppercase to make it easier for the user to enter.

OTP validation

The OTP validation process follows a secure protocol that protects against several types
of attacks. When a user submits their code, the system first retrieves the temporarily
stored encrypted OTP using the session token.

Decryption is performed using the same key and context as during the initial encryption,
ensuring the integrity of the process. The comparison between the submitted OTP and
the decrypted OTP uses a time-constant comparison function, which takes the same
amount of time regardless of the similarity of the values, thus protecting against timing
attacks.

The system also checks that the OTP has not expired by comparing the current
timestamp with the stored expiration date. If validation fails for any reason—incorrect
or expired code—a specific exception is raised. The OTP is immediately deleted from
temporary storage after use, whether successful or not, preventing any reuse and
limiting the exposure window.

\subnoto 12

Passkey authentication (WebAuthn)

Implementation

- WebAuthn level 2 : Full support for passkey authentication (biometric key,
hardware key, etc.).

- Registration : Creation of a public/private key pair linked to the device, with
storage on the client side.

- Authentication : Cryptographic challenge, the private key never leaves the device.

Workflow of passkey registration

User Browser API Authenticator Database

Registration request

>

POST /webauthn-register-options

»

Generates cryptographic challenge

>

Registration options

navigator.credentials.create()

Biometric authentication (or Yubikey, for example)

A

Validation

v

Credential + signature

POST /webauthn-register-verify

>
>

Verifies signature and attestation

D)

Stores public key

v

Confirmation

User Browser API Authenticator Database

\subnoto. 13
e

Workflow of passkey authentication

User Browser API Authenticator Database

Login request

POST /request-login {email, method: ‘passkey}

Retrieves user passkeys

Generates challenge

Authentication options

A

navigator.credentials.get()

User authentication

Validation

Assertion + signature

POST /confirm-login

Retrieves public key

Verifies signature

)

Updates counter

Session created

User Browser API Authenticator Database

\subnoto. 14

Management of email tokens

Secret tokens are a mechanism used whenever an invitation is sent via an external
communication channel such as email. To ensure that even a Subnoto employee cannot
alter or access the content of these invitations, secret tokens are always encrypted—in
transit, during execution, and when stored.

Usage

Subnoto uses unique secret tokens to secure the following links:
- envelope signature links
- invitations to join a team

Secure links generation

The process of creating secure signature links combines several cryptographic elements
to ensure maximum security. When sending an envelope, the system first generates a
unique UUID token that will serve as the public identifier for the link. At the same time, a
32-byte secret key is generated using a cryptographically secure random number
generator (TRNG).

This secret key is then encrypted using the AES-GCM algorithm with a specific context
that includes the recipient's email, the UUID of the resource to be accessed (such as an
envelope or team), and the generated token. This contextual encryption approach
ensures that the key can only be decrypted in the exact context for which it was created.

The encrypted data is stored in the database, along with the version of the encryption
key used and the recipient's metadata. The final link is constructed by combining the
frontend URL with the UUID of the resource to be accessed, and by including the token
and the secret key in the URL fragment (after the # symbol), which prevents their
transmission to the server in standard HTTP logs.

Tokens link validation

The validation of link tokens follows a rigorous cryptographic verification process to
ensure the authenticity and integrity of each access. When a user accesses a secure link,
the system first retrieves the recipient's information associated with the provided token
from the database.

\subnoto 15

The decryption process reconstructs the original secret key using the same encryption
key and context as during link creation. This context includes the recipient’'s email, the
resource UUID, and the token, ensuring that decryption can only succeed if all these
elements match exactly.

Final validation uses a cryptographically time-constant comparison between the
decrypted secret key and the one provided in the URL. This comparison method takes
the same amount of time regardless of the similarity of the values, protecting against
timing attacks that could gradually reveal the correct key.

\subnoto 16

Sessions security

Architecture

Subnoto sessions use a cryptographic key system rather than traditional cookies.

Sessions management

The session creation process completely abandons the traditional cookie-based
approach in favor of a robust cryptographic key system. Generation begins with the
creation of two distinct keys: a public access key and a secret key, both generated using
cryptographically secure algorithms.

The secret key is immediately encrypted using the AES-GCM algorithm with a specific
context including the access key (converted to hexadecimal), the user's email address,
and their numeric identifier. This contextual encryption approach ensures that the key
can only be decrypted in the exact context of its intended use.

Database storage includes not only the keys but also complete security metadata: the
access key in hexadecimal format, the encrypted secret key encoded in base64, the
version of the encryption key used, the user identifier, a description of the session, the
originating IP address, and the client’s user agent. This information allows for complete
auditing and access traceability.

The system finally returns the access key in hexadecimal format and the secret key in
base64url format, optimized respectively for storage and secure transmission via URLs.

\subnoto 17

Encryption and protection of data

AES-GCM encryption with context

- Contextual AES-GCM is used for all sensitive data

- Context: metadata related to the data, strict structure

- Decryption impossible outside the exact context (protection against reuse, key
theft, etc.)

- Base64 encoding for portability

Contextual encryption: details

The contextual encryption system for secrets implements an advanced security
approach that goes beyond simple symmetric encryption. This method integrates
specific metadata directly into the cryptographic process to create an inseparable link
between the encrypted data and its usage context.

For example, in the context of invitation links to sign a document, the encryption
context is defined by a strict structure that includes the envelope UUID, the recipient’s
email address, and the invitation's primary key in base format. This structure is
validated against a rigid JSON schema that specifies the expected data types and marks
all fields as required, with an explicit prohibition of additional properties.

The AES-GCM algorithm with authenticated context ensures that data can only be
decrypted if the exact context is provided. This approach protects against attacks where
an attacker might try to reuse encrypted keys in a different context, even if they had
access to the main encryption key. The encryption result is encoded in base64 to
facilitate storage and transmission.

Architecture of encryption

Encryption

Plaintext data ~———» JSON Context Validation schema AES-GCM 256-bit Encrypted data + Tag

Decryption

Encrypted data Tag validation —4 AES-GCM decryption }—v Context validation Plaintext data

\subnoto 18

Compliance and standards

Standards used

RFC 9421: HTTP Message Signatures
WebAuthn Level 2: Secure web authentication
FIDO2/CTAP2: Strong authentication protocols
OpenlD Connect: Identity federation
AES-GCM: Authenticated encryption

o bk~ 0D~

Security good practices

Modern cryptography: Exclusive use of proven algorithms

Key management: Automatic rotation and versioning

Zero Trust principle: Systematic verification

Security logging: Complete access traceability

Automatic expiration: Tokens and sessions have limited duration

ok~ 0N~

\subnoto 19

	
	
	
	
	
	
	
	
	
	
	
	
	
	White Paper
	General architecture
	Principles
	Signature’s platform
	Hardware security for isolation and in use memory encryption
	Attestations and binaries reproducibility
	Application’s session security
	Encryption keys management

	
	Integrity and authentication
	General
	Signature process
	
	Mandatory signed elements
	Implementation of the verification
	Timing attacks security

	
	Passwordless authentication
	Supported methods
	Email Authentication
	Workflow of email authentication
	Generation and storage of OTP
	OTP validation

	Passkey authentication (WebAuthn)
	Implementation
	Workflow of passkey registration
	Workflow of passkey authentication

	Management of email tokens
	Usage
	Secure links generation
	Tokens link validation

	
	Sessions security
	Architecture
	Sessions management

	Encryption and protection of data
	AES-GCM encryption with context
	Contextual encryption: details

	Architecture of encryption

	Compliance and standards
	Standards used
	Security good practices

