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General architecture 

Principles 

Subnoto’s platform is built around the following key assumptions: 

●​ Security must be transparent and provable—pinky promises and security 
through obscurity aren’t enough. That’s why we use remotely attestable 
components. 

●​ Encryption at rest and in transit—the current industry standards—aren’t 
sufficient for today’s modern threats. All sensitive data is encrypted at rest, in 
transit, and even while in use. 

●​ Customers own their data (meaning only they can decide who can access it), 
and we design everything to ensure nobody—not even Subnoto administrators 
or cloud providers—can access it. 

●​ Classic passwords or any stealable tokens (like cookies or standard API keys) are 
unreliable and should be avoided. Instead, we use Passkeys, signed API 
requests, and NOISE tunneling over HTTPS. 

Signature’s platform 

The signature’s platform consists of four main components: 

1.​ Web Application: 
○​ A single-page application (SPA) served from a trusted, signed container. 
○​ Integrity is verifiable by rebuilding from public source code. 

2.​ Main Enclave: 
○​ Runs in isolation with memory encryption. 
○​ Handles critical operations like encryption/decryption, session 

management, and signatures. 
3.​ Key Provisioners: 

○​ Generate and protect encryption keys, ensuring only authorized enclaves 
can access them. 

4.​ Utility Main API: 
○​ Manages non-critical operations such as external payments and invoicing. 
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Hardware security for isolation and in use memory 
encryption 
 

Subnoto leverages state-of-the-art hardware isolation and memory encryption using 
AMD SEV/SNP, the Linux Kernel, QEMU, and Google’s open-source Oak middleware1. 
Our enclaves are “Confidential VMs” (CVMs) built on these key technologies. 

The AMD SEV/SNP2 secure microcontroller is responsible for: 

●​ Memory encryption: This is hardware-based, and no software can access the 
encryption keys. The keys are managed entirely by the Secure Processor, a 32-bit 
microcontroller (ARM) that functions as a dedicated security subsystem 
integrated within the SoC (system on chip). Each key is generated using the 
onboard NIST SP 800-90-compliant hardware random number generator and 
stored in dedicated hardware registers, where it is never exposed outside the 
SoC in clear text. 

○​ Memory Read 

 

○​ Memory Write 

 

2 AMD SEV/SNP 
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-
SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf 
 

1 Project oak: https://github.com/project-oak/oak 
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●​ and Software isolation: Unlike the traditional model where the hypervisor must 
be trusted, CVMs eliminate this requirement.​

 

 

The Linux Kernel and QEMU are untrusted components that call various CPU 
APIs to: 

●​ Launch and trigger the hardware encryption to encrypt the Confidential 
VM. 

●​ Trigger the signed measurement of  the initial state from the CPU 
●​ Allow selected data to flow between the insecure environment and the 

secure one. Most communication occurs through a memory space 
allocated and shared between the Guest and the Hypervisor.​
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Attestations and binaries reproducibility 

To maximize the benefits of this architecture, we need trusted and verifiable code 
running inside the enclave. We draw heavy inspiration from the Oak project and use 
hermetic Bazel build3 to achieve reproducibility. 

●​ The supply chain is minimized to the essentials and pinned to specific versions.  
●​ A key property of Bazel builds is determinism: each set of rules ensures the same 

output every time the build runs. That’s what allows the customers or a third 
party to verify that the published code is indeed generating the attested 
components used in production.  

This process produces a set of components (from the VM firmware and BIOS to the 
container running the application code, as well as the system image and kernel) that are 
hashed and signed independently using both a private key and the Cosign keyless 
system. 

These steps generate a set of attestations that are presented to our client apps, which 
can then decide whether to trust them. 

 
 
The Cosign keyless system allows us to link each attestation to a commit of our git 
repository, it also prevents the usage of a long lived signature key (that could stolen or 
misused) by leveraging the Sigstore’s Certificate Authority and an OIDC authentication 
from the CI job itself.4 

4 Sigstore’s Certificate Authority: 
https://docs.sigstore.dev/certificate_authority/certificate-issuing-overview/ 

3 Bazel hermetic builds: https://bazel.build/basics/hermeticity 
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Application’s session security  

When a client application connects to an Enclave Application, it first requests the 
attestation evidence and associated endorsements. The endorsements include a 
certificate chain from AMD to prove that the attestation report was signed by a 
legitimate AMD CPU, as well as signed statements from the developers of the various 
components running inside the enclave. 

It then verifies the evidence using these endorsements and the expected reference to 
ensure it matches expectations. The client application should also confirm that the 
enclave application is running in an up-to-date and correctly configured Trusted 
Execution Environment (TEE)—for example, that the CPU is using the latest versions of 
microcode and SNP firmware, and that debugging is disabled—and that the identities of 
the various components inside the enclave match expectations. 

Once the client app is satisfied that the enclave application meets all its requirements, it 
uses a public key bound to the evidence to establish an encrypted channel with the 
enclave application. 

This session occurs on top of the standard HTTPS session and is based on the NOISE5 
protocol. 

All the sensitive API methods of our signature app are using this type of session.  

Encryption keys management 

A challenging aspect of the architecture is providing persistent encryption keys for 
persistent data that we are unable to access. AMD SEV/SNP can generate such keys for 
each hardware device, but the usable key is derived from the initial measurement of the 
enclave extracting it. This means the keys differ for each different CPU and when the 
initial measurement changes (e.g., during code updates). 

To address this, we’ve built a dedicated service that encrypts a persistent key to external 
storage using the AMD SEV-derived key. Enclave apps can query this key provider, which 
verifies their attestations through a bidirectional Oak session6 to confirm authorization. 
New versions of the key provider can use the same mechanism to retrieve the 
encryption key and persist it using their own TEE-derived key. 

6 Oak Session : https://github.com/project-oak/oak/tree/main/oak_session 
 

5 The Noise protocol framework : https://noiseprotocol.org/ 
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This key provider is using only two small components from Oak on top of the 
application itself (no system, no linux kernel or anything else) :  

●​ stage07, that is the firmware used to boot the CVM, attest the other components 
and launch the kernel. 

●​ the oak_restricted_kernel8 (60k lines of rust) that is doing the minimum 
required to launch our application. 

●​ The application itself (a few lines of rust). 
 
It allows us to have a very small trusted computing base for this critical component and 
to be very simple to audit and verify that no one can access the encryption keys. 

 

8 Oak restricted kernel : https://github.com/project-oak/oak/tree/main/oak_restricted_kernel 

7 Oak stage0 : https://github.com/project-oak/oak/tree/main/stage0 
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Integrity and authentication 

General 
All requests to the enclaves are encapsulated within a NOISE tunnel (ensuring integrity 
and confidentiality). 
Furthermore, each API request uses the RFC 9421 standard to guarantee authenticity 
and integrity. 
The HTTP signature protects both critical headers and the request body against any 
alteration or interception. 
 

Signature process 
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Mandatory signed elements 
Each request must sign four critical components to ensure the complete integrity of the 
communication. The system is required to verify the request's timestamp to prevent 
replay attacks, the HTTP authority to ensure the request is intended for the correct 
server, the content type to validate the format of the data being sent, and finally the 
hash of the request body to guarantee that the content has not been tampered with 
during transit. 

Implementation of the verification 
The HTTP signature verification process follows a rigorous sequence of five main steps. 
First, the system extracts and validates all the required signature headers from the 
incoming request. Next, it parses the signature according to the strict specifications of 
RFC 9421, breaking down the structural elements of the signature. The third step 
consists of identifying the type of authentication used, whether it is an application key 
or a session key. The system then retrieves the corresponding secret key from the 
database. Finally, it performs the actual cryptographic verification using the 
HMAC-SHA256 algorithm, comparing the provided signature with the one calculated 
locally. If this verification fails, an authentication error is immediately raised to reject the 
request. 

Timing attacks security 
The API implements a sophisticated protection against replay attacks by rigorously 
validating the time offset of requests. The system checks that the signature creation 
timestamp falls within an acceptable time window. This approach protects against 
attempts to maliciously reuse previously captured signatures, while taking into account 
normal clock variations between different systems. 
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Passwordless authentication 
The Subnoto system completely eliminates the use of traditional passwords, opting for 
more secure authentication methods. 

Supported methods 
-​ OTP by email : one time code, secure transaction 
-​ WebAuthn/Passkeys : biometric authentication or security hardware key 
-​ SSO/OIDC : delegate to third party authentication service 

 

Email Authentication 

Workflow of email authentication 
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Generation and storage of OTP 
The OTP (One-Time Password) generation process follows strict cryptographic standards 
to ensure their unpredictability. The system first generates a random three-byte code 
using the system’s secure cryptographic generator, thus producing a six-character 
hexadecimal code. Simultaneously, a unique UUID token is created to identify the login 
session. 
 
The OTP is then encrypted using the AES-GCM algorithm with a specific context that 
includes the token and the user's email address. This contextual encryption approach 
prevents malicious alterations and exchanges in the database. Therefore, if during 
decryption the context is not exactly the same, the decrypted value is never obtained 
and the authentication process fails. 
 
The encrypted code is temporarily stored in memory with a lifetime limited to five 
minutes, along with the encryption key version and the expiration date. The OTP is sent 
via the Brevo service (a French transactional email provider), where the code is 
displayed in uppercase to make it easier for the user to enter. 

OTP validation 
The OTP validation process follows a secure protocol that protects against several types 
of attacks. When a user submits their code, the system first retrieves the temporarily 
stored encrypted OTP using the session token. 
 
Decryption is performed using the same key and context as during the initial encryption, 
ensuring the integrity of the process. The comparison between the submitted OTP and 
the decrypted OTP uses a time-constant comparison function, which takes the same 
amount of time regardless of the similarity of the values, thus protecting against timing 
attacks. 
 
The system also checks that the OTP has not expired by comparing the current 
timestamp with the stored expiration date. If validation fails for any reason—incorrect 
or expired code—a specific exception is raised. The OTP is immediately deleted from 
temporary storage after use, whether successful or not, preventing any reuse and 
limiting the exposure window. 
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Passkey authentication (WebAuthn) 

Implementation 
-​ WebAuthn level 2 : Full support for passkey authentication (biometric key, 

hardware key, etc.). 
-​ Registration : Creation of a public/private key pair linked to the device, with 

storage on the client side. 
-​ Authentication : Cryptographic challenge, the private key never leaves the device. 

Workflow of passkey registration 
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Workflow of passkey authentication 
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Management of email tokens 
Secret tokens are a mechanism used whenever an invitation is sent via an external 
communication channel such as email. To ensure that even a Subnoto employee cannot 
alter or access the content of these invitations, secret tokens are always encrypted—in 
transit, during execution, and when stored. 

Usage 
Subnoto uses unique secret tokens to secure the following links: 

-​ envelope signature links 
-​ invitations to join a team 

Secure links generation 
The process of creating secure signature links combines several cryptographic elements 
to ensure maximum security. When sending an envelope, the system first generates a 
unique UUID token that will serve as the public identifier for the link. At the same time, a 
32-byte secret key is generated using a cryptographically secure random number 
generator (TRNG). 
 
This secret key is then encrypted using the AES-GCM algorithm with a specific context 
that includes the recipient’s email, the UUID of the resource to be accessed (such as an 
envelope or team), and the generated token. This contextual encryption approach 
ensures that the key can only be decrypted in the exact context for which it was created. 
 
The encrypted data is stored in the database, along with the version of the encryption 
key used and the recipient’s metadata. The final link is constructed by combining the 
frontend URL with the UUID of the resource to be accessed, and by including the token 
and the secret key in the URL fragment (after the # symbol), which prevents their 
transmission to the server in standard HTTP logs. 

Tokens link validation 
The validation of link tokens follows a rigorous cryptographic verification process to 
ensure the authenticity and integrity of each access. When a user accesses a secure link, 
the system first retrieves the recipient’s information associated with the provided token 
from the database. 
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The decryption process reconstructs the original secret key using the same encryption 
key and context as during link creation. This context includes the recipient’s email, the 
resource UUID, and the token, ensuring that decryption can only succeed if all these 
elements match exactly. 
 
Final validation uses a cryptographically time-constant comparison between the 
decrypted secret key and the one provided in the URL. This comparison method takes 
the same amount of time regardless of the similarity of the values, protecting against 
timing attacks that could gradually reveal the correct key. 
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Sessions security 

Architecture 
Subnoto sessions use a cryptographic key system rather than traditional cookies. 

Sessions management 
The session creation process completely abandons the traditional cookie-based 
approach in favor of a robust cryptographic key system. Generation begins with the 
creation of two distinct keys: a public access key and a secret key, both generated using 
cryptographically secure algorithms. 
 
The secret key is immediately encrypted using the AES-GCM algorithm with a specific 
context including the access key (converted to hexadecimal), the user's email address, 
and their numeric identifier. This contextual encryption approach ensures that the key 
can only be decrypted in the exact context of its intended use. 
 
Database storage includes not only the keys but also complete security metadata: the 
access key in hexadecimal format, the encrypted secret key encoded in base64, the 
version of the encryption key used, the user identifier, a description of the session, the 
originating IP address, and the client’s user agent. This information allows for complete 
auditing and access traceability. 
 
The system finally returns the access key in hexadecimal format and the secret key in 
base64url format, optimized respectively for storage and secure transmission via URLs. 
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Encryption and protection of data 

AES-GCM encryption with context 
-​ Contextual AES-GCM is used for all sensitive data 
-​ Context: metadata related to the data, strict structure 
-​ Decryption impossible outside the exact context (protection against reuse, key 

theft, etc.) 
-​ Base64 encoding for portability 

Contextual encryption: details 
The contextual encryption system for secrets implements an advanced security 
approach that goes beyond simple symmetric encryption. This method integrates 
specific metadata directly into the cryptographic process to create an inseparable link 
between the encrypted data and its usage context. 
 
For example, in the context of invitation links to sign a document, the encryption 
context is defined by a strict structure that includes the envelope UUID, the recipient’s 
email address, and the invitation’s primary key in base format. This structure is 
validated against a rigid JSON schema that specifies the expected data types and marks 
all fields as required, with an explicit prohibition of additional properties. 
 
The AES-GCM algorithm with authenticated context ensures that data can only be 
decrypted if the exact context is provided. This approach protects against attacks where 
an attacker might try to reuse encrypted keys in a different context, even if they had 
access to the main encryption key. The encryption result is encoded in base64 to 
facilitate storage and transmission. 

Architecture of encryption 
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Compliance and standards 

Standards used 
1.​ RFC 9421: HTTP Message Signatures 
2.​ WebAuthn Level 2: Secure web authentication 
3.​ FIDO2/CTAP2: Strong authentication protocols 
4.​ OpenID Connect: Identity federation 
5.​ AES-GCM: Authenticated encryption 

Security good practices 
1.​ Modern cryptography: Exclusive use of proven algorithms 
2.​ Key management: Automatic rotation and versioning 
3.​ Zero Trust principle: Systematic verification 
4.​ Security logging: Complete access traceability 
5.​ Automatic expiration: Tokens and sessions have limited duration 
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